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We use a topological approach to describe the frustration- and field-induced phase transitions exhibited by
the infinite-range XY model on the AB2 chain, including noncollinear spin structures. For this purpose, we have
computed the Morse number and the Euler characteristic, as well as other topological invariants, which are
found to behave similarly as a function of the energy level in the context of Morse theory. In particular, we use
a method based on an analogy with statistical mechanics to compute the Euler characteristic, which proves to
be quite feasible. We also introduce topological energies which help us to clarify several properties of the
transitions, both at zero and finite temperatures. In addition, we establish a nontrivial direct connection between
the thermodynamics of the systems, which have been solved exactly under the saddle-point approach, and the
topology of their configuration space. This connection allows us to identify the nondegeneracy condition under
which the divergence of the density of Jacobian’s critical points �jl�E�� at the critical energy of a topology-
induced phase transition, proposed by Kastner and Schnetz �Phys. Rev. Lett. 100, 160601 �2008�� as a
necessary criterion, is suppressed. Finally, our findings and those available in the literature suggest that the
cusplike singularity exhibited both by the Euler characteristic and the topological contribution for the entropy
at the critical energy, put together with the divergence of jl�E�, and emerge as necessary and sufficient condi-
tions for the occurrence of the finite-temperature topology-induced phase transitions examined in this work.
The general character of this proposal should be subject to a more rigorous scrutiny.
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I. INTRODUCTION

Recently, methods and concepts of geometry and differ-
ential topology, especially those from Morse theory, have
been used to propose a topological approach to phase transi-
tions �PTs� �1�. In fact, based on the temperature- or energy-
dependent singular behavior presented by some geometrical
observables at the critical point, it has been conjectured �2�
that the occurrence of thermodynamic PTs is connected to a
nontrivial change in the topology of the configuration space.
Later, it has been proved that this conjecture is a necessary
condition to phase transitions in systems described by
smooth, finite-range, and confining microscopic interaction
potentials �3�. However, the necessity theorems do not ex-
clude the possibility that infinite-range �mean-field-like �MF-
like�� or long-range models exhibit PTs that are connected to
a topological change in configuration space �1�. Very re-
cently, following some of the arguments used to prove the
above theorems, a necessity criterion for topology-induced
PT was proved �4�, namely, the divergence of the density of
Jacobian’s critical points at the critical energy level in the
thermodynamic limit. This criterion introduced a geometrical
aspect associated to microscopic properties, i.e., curvatures
at the saddle points of the potential, confirmed the topologi-
cal origin of the phase transitions in two exactly infinite-
range solvable models, the infinite-range XY model �5,6� and
the k-trigonometrical model �7�, and excluded that occurring
in the spherical model with nearest-neighbor interaction �8�.
In fact, as pointed out by Pettini �9�, this model is not a
counterexample for the necessity theorems �3� since the
spherical constraint introduces long-range interaction. The
above ideas have also proved useful in the description of
PT in models of DNA denaturation �10� and of protein
folding �11�.

The physical motivation of our work is to present a topo-
logical characterization of the zero- and finite-temperature
PTs exhibited by two XY models on the AB2 chain �see Fig.
1�a�� at the MF level: the frustrated AB2-XY model and the
AB2-XY model in the presence of a magnetic field. No ki-
netic energy effects are considered. The AB2 chain has a
special unit cell topology that enriches the variety of spin
phases, including noncollinear structures, and is of theoreti-
cal and experimental relevance in the context of low-
dimensional strongly correlated systems �12�. In fact, the
physical properties of the quasi-one-dimensional magnetic
compound azurite are successfully explained by the frus-
trated AB2 �or distorted diamond� chain �13�. In Fig. 1�b� we
also display a chain with a distinct three-site unit cell topol-
ogy �14�. Without interaction between spins at B sites, this
chain is associated with the organic compound Poly�1,4-
bis�2, 2, 6, 6-tetramethyl-4-piperidyl-1-oxyl�-butadiene�
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FIG. 1. �Color online� Frustrated AB2 chain: only first-neighbor
competing AF couplings, J1 and J2, are indicated. �b� Distinct chain
with three-site unit cell topology �see text�.
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�poly-BIPO�, which is made of polyacetylene-based radicals
with an unpaired electron per unit cell �15�. On the other
hand, for Hamiltonian with first-neighbor spin interactions
only, the AB2 chain shown in Fig. 1�a� exhibits local invari-
ance under the exchange of B sites at the same unit cell, a
symmetry which is not shared by the chain in Fig. 1�b�;
notice also that the coordination numbers of some sites in
these chains are distinct. Within the standard MF approxima-
tion, the molecular field on a site depends on its coordination
number, which thus enhances the magnitude of the exchange
field in the MF self-consistent equations. However, for
infinite-range interactions, both chains have 3Nc

2 pairs of spin
at sites A-B1, A-B2, and B1-B2 bonded by exchange interac-
tions �see Fig. 1�; in this framework both chains are thus
equivalent and the dimensionality of the system and the ac-
tual positions of the spins are immaterial. Moreover, under
these circumstances, both chains share an invariance under
the exchange of any pair of B sites. In any case, it is well
known that the MF approximation for the short-range model
can be made identical to the exact solution of the corre-
sponding model with infinite-range interactions as long as
the values of the effective exchange constants of the latter
model are balanced in such a way that the coordination num-
ber effect is properly considered �16�, as shown below.

From now on we focus on the bipartite AB2-XY chain
with three sites �named A, B1, and B2� per unit cell and two
antiferromagnetic competing couplings, J1 ��1� and J2
��J�, as illustrated in Fig. 1�a�, which we model through the
infinite-range classical planar AB2-XY Hamiltonian with ef-
fective coupling values chosen to match the self-consistent
conditions of the standard MF approximation �17,18�,

H = �
i,j=1

Nc 1

Nc
�zABSAi

· �SB1j
+ SB2j

� + zBJSB1i
· SB2j

− h · �SAi
+ SB1i

+ SB2i
�� , �1�

where H measures the total energy of the system for a given
microscopic spin configuration �see below�, Nc is the total
number of unit cells, zAB=2 and zB=1 are the coordination
numbers of sites A �first-neighbor J1 couplings� and B �first-
neighbor J2 couplings�, SA1, SB1i, and SB2i are classical spin
variables with unit size, and h is the magnetic field along the
x direction �see Fig. 1�a��. The results for any other system
with three spins per unit cell are completely equivalent and
easily obtained by adjusting the corresponding coordination
numbers.

The paper is organized as follows: in Sec. II we discuss
the topology of configuration space in light of fundamental
properties of Morse theory and topological invariants, such
as the Euler characteristic and the density of Jacobian’s criti-
cal points. Further, we present an alternative method to com-
pute topological invariants. In Sec. III, we apply these meth-
ods to study both the zero- and finite-temperature PTs
exhibited by the infinite-range AB2-XY models in the pres-
ence of frustration or magnetic field. The thermodynamics of
the models are exactly derived under the saddle-point ap-
proach. In this section, we also revisit the standard infinite-
range XY model in the presence of a field. Finally, In Sec. IV

we present some concluding remarks, and in Appendixes A
and B we report on symmetry properties of the models and
results of additional topological invariants, such as the Morse
number as well as the topological contribution to the entropy,
respectively.

II. TOPOLOGY OF CONFIGURATION SPACE

We first introduce the magnetization given by

m� �
S�

Nc
= �m�x,m�y� = 	 1

Nc
�
i=1

Nc

cos ��i,
1

Nc
�
i=1

Nc

sin ��i
 ,

�2�

where �=A, B1, or B2 and ��i refers to the angles of S�i with
respect to the local x-y coordinate axis at site �i. Further, we
use the symmetry conditions to restrict our analysis to A and
B �B1 or B2� sites �see Appendix A�. We are primarily con-
cerned with finding the critical points of the Morse function
�19�, H=H /Nc, i.e., the energy per unit cell for a given mi-
croscopic spin configuration through the equations

�H��A,�B�
���i

= 0, i = 1, . . . ,Nc, � = A,B �3�

in the manifold M defined by the 2Nc-dimensional configu-
ration space. Since Morse functions on M are dense on the
space of smooth functions on M, if H is not a proper Morse
function, we can transform it onto a Morse function by add-
ing an arbitrarily small perturbation �1,20�. Thus, we restrict
our analysis to the isolated critical points of H. Our goal is to
compute the Euler characteristic ��ME� of the submanifolds
ME, with H not greater than a given value of energy per unit
cell E,

��ME� = �
k=0

2Nc

�− 1�k�k�ME� , �4�

where the Morse number �k is the number of critical points
of ME with k as negative eigenvalues of the Hessian �see
Appendix B�,

Hij =
�2H��A,�B�
���i � ��j

, i, j = 1, . . . ,Nc, � = A,B , �5�

i.e., with index k �5,6�. In our analysis, it will prove useful to
define the minimum �maximum� topological energy, ETmin

�ETmax�, below �above� which the topological invariants are
zero �or display no variation�. We emphasize that ��ME� is
zero for E�ETmin and E�ETmax; nontrivial values occur only
for ETmin�E�ETmax, as shown in the examples presented in
Sec. III. Moreover, in order to measure the �nonanalytic�
saddle-point contributions from the critical points in the
neighborhood of E to the entropy �4�, we also compute the
density of Jacobian’s critical points in the thermodynamic
limit, given by
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jl�E� = lim
Nc→	

1

2Nc
ln	 �

qc�Ql�E,E+
E�
J�qc�/ �

qc�Ql�E,E+
E�
1
 ,

�6�

where J�qc� is the Jacobian determinant and Ql�E ,E+
E�
denotes the set of critical points qc with index k�qc�= l
�mod 4� and with critical values H�qc� in the interval �E ,E
+
E� �4�.

In order to turn the computation of ��ME� more feasible,
we use an analogy with statistical mechanics in the context
of the microcanonical ensemble. Let ���E� denotes the dif-
ference between the Euler characteristics in the even-
dimensional compact submanifolds �21� ME+
E and ME,

���E� � ��ME+
E� − ��ME� , �7�

where ��
E��E; here �E is the interval of energy in
which ��ME� is nonzero and � is the average distance be-
tween two neighbor critical levels. Then,

���E� � ���E�
E , �8�

where ���E� is the density of critical points of H at energy
E, with weight �−1�k. Since for systems in which the number
of isolated critical points increases as 2Nc �see below�,
���ME�� grows exponentially with Nc, the following defini-
tions are equivalent in the thermodynamic limit �up to
O�ln 2Nc��:

ln���ME�� = ln����ME�� = ln����ME�� . �9�

Further, for sufficiently large Nc, we can take

ln����ME�� � ln �c�E� , �10�

where �c�E� is the microcanonical density of critical points.
For example, for the models studied in this work, we find
that ���E /Nc

2� and �E10; so, we have computed
��ME� using 
E��E /Nc� and Nc=103. With these pre-
scriptions, we have verified Eqs. �9� and �10� to very good
numerical accuracy.

III. TOPOLOGY AND NONCOLLINEAR SPIN
STRUCTURES

A. Frustrated AB2-XY model

In the frustrated AB2-XY model �J�0, h=0�, the symme-
try condition implies mB1y =−mB2y �mBy and mB1x=mB2x

�mBx �see Appendix A�. In fact, this solution turns out to be
the appropriate one under the physical constraint of zero
transversal magnetization. The Hamiltonian per unit cell in
terms of collective variables thus reads

H��A,�B� = 4mAxmBx + J�mBx
2 − mBy

2 � . �11�

The exact solution of the model at T�0 results from com-
puting the canonical partition function

Z�� � 1/T,Nc� =� �
i=1

Nc

d�Aid�Bi exp�− �NcH��A,�B�� ,

�12�

with

H��A,�B� = �mAx/�J + �JmBx�2 − JmBy
2 − mAx

2 /J , �13�

although, for 0�J�1, the quadrature H=2��mAx+mBx�2

−2mAx
2 − �2−J�mBx

2 −JmBy
2 � is more suitable for numerical

computation. Using the identities

exp�− cyi
2� =

1
��
�

−	

+	

exp�− xi
2 + 2i�cxiyi�dxi, �14�

with y1=mAx /�J+�JmBx, y2=mBy, and y3=mAx, and

I0��x2 + y2� =
1

2�
�

0

2�

d� exp�x cos � + y sin �� , �15�

where I0 is the zero-order modified Bessel function, we ob-
tain

Z��,Nc� = 	 Nc

4��J

3/2�

−	

+	

�
i=1

3

dzi

�exp�− Nc��
i=1

3
zi

2

4�J
− ln 2�I0�2

J
�iz1 − z2��

− ln 2�I0��z3
2 − z1

2��� , �16�

with zi=2��J /Ncxi, i=1,2 ,3.
Now, using the saddle-point method, the free energy reads

F�T;J� = − lim
Nc→	

1

�Nc
ln Z��,Nc�

=
1

�
��

i=1

3
zi

2

4�J
− ln 2�I0�2

J
�iz1 − z2��

− ln 2�I0��z3
2 − z1

2�� , �17�

whose extremum solutions satisfy the set of self-consistency
equations for the following: �i� for z3�0 and 2z1+ iz2=0,

�z3
2 − z1

2

2�J
−

I1

I0
��z3

2 − z1
2� = 0 �18�

and

iz1

�J
+

I1

I0
	2

J
�− iz1�
2

J
= 0; �19�

�ii� for z3=0,

iz1 − z2

2�J
+

I1

I0
�iz1� = 0 �20�

and

z2

2�J
+

I1

I0
	2

J
�iz1 − z2�
2

J
= 0. �21�

The associated zero-field magnetization is given by
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M�T;J� = − lim
h→0

1

�

�F��,h;J�
�h

, �22�

with addition of the Zeeman term, −h�mAx+2mBx�, in Eq.
�11�. From the solution that minimizes the free energy we
can compute Tc�J�, above which M�T ;J�=0, and

Ec�Tc;J� =
���F�� = �c;J��

��
= 0, ∀ J . �23�

The T-dependent magnetization is shown in Fig. 2. For 0
�J�2, Tc�J� decreases with J, leading to zero magnetiza-
tion at J=2. For J�2 the magnetization points in the oppo-
site direction. These features suggest a frustration-induced
phase transition at T=0. In fact, for 0�J�1, simple mini-
mization of H��A ,�B� in Eq. �11� gives a ferrimagnetic phase
with energy

Emin�J� = − 4 + J, 0 � J � 1, �24�

in agreement with Lieb-Mattis theorem �22�. At J=1, the
system undergoes a frustrated-induced second-order transi-
tion to a canted phase defined by

cos��B� =
1

J
�25�

and energy

Emin�J� = −
2

J
− J, J � 1. �26�

In the following we will present a topological description of
the PT exhibited by the system both at T=0 and at finite
temperature. For this aim, we will examine the topology of
configuration space in detail.

First we mention that the accessible configurations are
defined by the cylinder

CB = ��mAx,mBx,mBy�:− 1 � mAx � 1,mBx
2 + mBy

2 � 1� .

�27�

Therefore, the equipotential submanifolds of H��A ,�B� are
obtained by diagonalization of its quadratic form under the
constraint of CB for a given energy E. Denoting by m1 and m2
the eigenvectors of the quadric, with eigenvalues �1 and �2,
respectively, the Cartesian equation of the normalized sur-
face reads

�1m1
2

E
+

�2m2
2

E
−

JmBy
2

E
= 1. �28�

We thus get, ∀ J, a hyperboloid of one sheet for E�0, a
cone for E=0, and a hyperboloid of two sheets for E�0. In
particular, at the highest symmetry point ��=120°�, J=2 and
ETmin=−2, with M�T ;J=2�=0, we obtain the golden hyper-
boloid, a quadratic form whose coefficients are the golden
number and its conjugate �23�,

− 	1 + �5

2

m1

2 − 	1 − �5

2

m2

2 + mBy
2 = 1. �29�

In approaching the critical energy Ec�T ;J�=0, ∀ J, from
below �E�Ec�, we would like to mention some relevant fea-
tures. For E�Emin�J� there is no intersection between the
equipotential submanifolds ME and CB �see Fig. 3�a� for E
=−4 and J=1�. For E=Emin�J�, ME touches the cylinder CB
�not shown in Fig. 3�. For E�Emin�J�=ETmin�J� and 0�J
�1, ME is inside CB, with nonzero topological invariants and
isomorphous to the hyperboloid �see Fig. 3�b� for E=−2 and
J=1�. However, the topological invariants become nonzero
not necessarily at Emin�J� �see Fig. 3�c� for E=−2.1 and J
=2�. In fact, the topological invariants become nonzero only
when two disconnected regions of the intersection surface
become connected at E=ETmin�J�. For 1�J�2 and Emin
�E�ETmin�J�, the intersection is nonzero but the topological
invariants vanish. For J�2 and ETmin�J��E�Ec �=0, ∀ J�
the intersection is isomorphous to the hyperboloid, thus lead-
ing to a discontinuity in the topological invariants, as illus-
trated in Fig. 3�d� for J=2 and E=−1.9. On the other hand,
for Ec�T ;J��E�ETmax�J�=Emax�J� the intersection surfaces
are two-sheet hyperboloids.
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0.5
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(T

)
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J = 1.5
J = 2
J = 4
J = 10

FIG. 2. �Color online� Frustrated AB2-XY model. T-dependent
magnetization for different values of J.

FIG. 3. �Color online� Intersection surfaces between equipoten-
tial submanifolds ME and CB. �a� For E=−4 and J=1, we have E
�Emin�J=1�=−3, so there is no intersection between ME and CB.
�b� For E=−2 and J=1, we have E�Emin�J�, so ME is inside CB,
with nonzero topological invariants. �c� For E=−2.1 and J=2, de-
spite nonempty intersection, the topological invariants are null. �d�
For E=−1.9 and J=2, we have E�ETmin, so the intersection be-
tween ME and CB is nonzero and isomorphous to the hyperboloid.
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The isolated critical points of the Morse function
H��A ,�B� �Eq. �11�� occur for �=�c� �0,��2Nc, i.e., for �c
= ��A1

, . . . ,�ANc
,�B1

, . . . ,�BNc
� with all components �Ai�Bi�

be-

ing either 0 or �. It is easy to show that the multiplicity of
the critical points is �

Nc

n�A
��

Nc

n�B
�, where n�A�B�

is the number of
A�B� spins with �c=�. Therefore, the Morse number reads

�k�E� = 	 Nc

n�A

	 Nc

n�B

�k�n�A,n�B;E�, �30�

where the index k�n�A ,n�B�, without energy restriction, is
given by Eqs. �B5�–�B7�. The computation of the index k
and �k�E�, including a discussion on some of their interest-
ing features, is presented in Appendix B.

On the other hand, due to the form of the H��A ,�B�, it is
useful to split the Hessian into two blocks; the first one,
relative to the A sites and the second one to the B sites,

Hij
AB = Hkl

A + Hmn
B , k,l = 1, . . . ,Nc, m,n = Nc + 1, . . . ,2Nc.

�31�

For Nc�1, the Hessian is diagonal with matrix elements
given by �see Appendix B�

Hii
A = −

4 cos �Ai

Nc
mBx, �32�

Hii
B = −

1

Nc
�4mAx cos �Bi + 2J�mxB cos �Bi − myB sin �Bi�� .

�33�

At an isolated critical point defined above, H��A ,�B� in Eq.
�11� reads

E�n�A
,n�B

,J� = 4	1 −
2n�A

Nc

	1 −

2n�B

Nc

 + J	1 −

2n�B

Nc

2

,

�34�

where use of Eq. �2� was made with mA�B�x= �1
−2n�A�B� /Nc� and mA�B�y =0.

We can now proceed to compute numerically the Euler
characteristic, in the convenient normalized form
ln��J�E�� /2Nc, and the density of Jacobian’s critical points
jl,J�E�. In fact, we have computed the first quantity in four
equivalent ways, as given by Eqs. �9� and �10�, and further
use of Eqs. �30�, �B5�–�B7�, and �34�. We stress that the
referred four ways of computing ln��J�E�� /2Nc give the same
result within numerical accuracy after subtraction of the
leading finite-size term of O�ln 2Nc /2Nc�. However, the
computational effort using the standard definition, i.e.,
ln��J�E��, is quite high, so that the final computation was
done using either of the remained approaches for Nc=103

and 
E=0.01. Moreover, the computation through Eq. �10� is
the simplest one since it needs only the use of Eq. �34�. On
the other hand, in computing jl,J�E� was made use of its
definition in Eq. �6�, which requires the computation of the
determinant of the Hessian whose diagonal matrix elements
are given by Eqs. �32� and �33�, and the energy around its
value in Eq. �34� with uncertainty 
E; in fact,  is irrelevant
in the thermodynamic limit �24�. Therefore, in order to ob-
tain accurate results, the computation was performed for Nc
=104 and 
E=0.001.

In Fig. 4�a� we display ln��J�E�� /2Nc measured on the
surface defined by the intersection of the equipotential sur-
face and CB. Notice that it exhibits a cusp at Ec�T�0� ∀ J.
For J�2, ln��J�E�� /2Nc is discontinuous at ETmin due to in-
tersection surfaces with zero �J�E� for Emin�J��E
�ETmin�J�. The intersection surfaces and ln��J�E�� /2Nc van-
ish at Emax=ETmax=4+J. The divergence of jl�E� at Ec�T
�0� ∀ J is shown in Fig. 4�b�, thus satisfying the necessity
criterion at a topology-induced PT �4�. The golden hyperbo-
loid at J=2 signals the change in the tail curvature of jl�E�
for E�0, associated with the ln��J�E�� /2Nc discontinuity
shown in Fig. 4�a�. Moreover, for 0�J�2, we find that
Emin�J�=ETmin�J�=−4+J �see Eq. �26��. However, ETmin�J�
splits from Emin�J� at Ec�T=0�=−3 and J=1, as shown in
Fig. 4�c�. In fact, for 1�J�2, ETmin�J� above corresponds to
a metastable Ising solution; further, for J�2, ETmin�J�=− 4

J
and in the region limited by Emin�J� and ETmin�J� we have

FIG. 4. �Color online� Frustrated AB2-XY model. �a� Cusplike pattern exhibited by ln��J�E�� /2Nc measured on the surface defined by the
intersection of the equipotential surface and the cylinder CB �see text�. For E�0, the equipotential surfaces are one-sheet hyperboloids; at
Ec�T�0�=0 ∀ J, we have a cone and for E�0 we have two-sheet hyperboloids. For J�2, ln��J�E�� /2Nc is discontinuous at ETmin�E� due
to intersection surfaces with zero �J�E� for Emin�J��E�ETmin�J�. The intersection surfaces and ln��J�E�� /2Nc vanish at Emax=ETmax=4
+J. �b� Divergence of jl,J�E� at Ec�T�0�=0 ∀ J. The golden hyperboloid at J=2 signals the change in the tail curvature of jl,J�E� for E
�0, associated with the discontinuous behavior shown in �a�. �c� Emin�J� and ETmin�J� split at Ec�T=0�=−3 and J=1. For J�2, there exist
intersection surfaces with zero �J�E� in the region limited by Emin�J� and ETmin�J�. The spin structures illustrate the stable phases associated
with Emin�J�.
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intersection surfaces with zero �J�E�. We also emphasize that
the topological energies �ETmin�J� and ETmax�J�� can be in-
ferred both from ln��J�E�� /2Nc, jl,J�E�, and �k�E� �see Ap-
pendix B�.

We close our analysis of the frustrated AB2-XY model by
establishing a nontrivial direct connection between the ther-
modynamics of the system and the topology of its configu-
ration space. In fact, for 0�J�1 �J�1�, besides the finite-
temperature results, we have found that the distinct
extremum numerical solutions of the saddle-point consis-
tency equations given above, in a C4 �C3� space, give rise to
the following energies in the limit T→0: the piecewise func-
tions Emin�J� and ETmin�J�, as defined above �see Fig. 4�c��,
where

E�T = 0,J� = − lim
T→0

�

��
��F�T;J�� . �35�

On the other hand, the MF maximum �and unstable� energy
solutions Emax�J�=ETmax�J�=4+J �ETmax�J�� is obtained from
Fig. 4�a�, but not shown in Fig. 4�c�, and can be readily
derived from Eq. �11�. The above results also confirm that
the symmetry condition �see Appendix A�, which is inferred
from the T=0 solution, is preserved for all temperatures in
the condensed phase.

B. Suppression of the TÅ0 phase transition in the frustrated
AB2-XY model

In Sec. IV we showed that the frustrated AB2-XY model
exhibits topology-induced finite-temperature PT for ∀ J. A
remarkable feature is the cusplike behavior displayed by the
Euler characteristic at the critical energy Ec�T�0�=0. In or-
der to test whether this behavior is a necessity condition for
a topology-induced PT, we study this system under a stag-
gered field to keep the magnetization at A sites at a constant
value, namely, mAx=−1. Obviously, under this stringent con-
dition, there is no phase transition, and thereby it should
manifest in the Euler characteristic.

Under the above-mentioned constraint, the zero-field
Hamiltonian �Eq. �11�� reduces to

H��B� = − 4mBx + J�mBx
2 − mBy

2 � �36�

and the accessible configurations are defined by the disk

DB = ��mBx,mBy�:mBx
2 + mBy

2 � 1� . �37�

Thus, the equipotential submanifolds of the Morse function
H��B� are obtained by identifying the corresponding conic,
given below, under the constraint of DB for a given energy E,

J	mBx −
2

J

2

− JmBy
2 = E +

4

J
. �38�

We thus get, ∀ J and ∀ E, a rectangular hyperbola, as
shown in Fig. 5�a�. The properties of the intersection curves
between the equipotential hyperbolas and DB around ETmin�J�
and Emin�J�, which attain the same values as in unconstrained
case �see Figs. 4�a� and 5�b��, follow the same pattern shown
in Fig. 3 under the restriction mAx=−1. In particular, the
present analysis makes possible a geometrical interpretation
of the metastable solution ETmin�J�=−4 /J, valid for J�2, as
explained in the following and illustrated in Fig. 5�a�. In fact,
for E�ETmin�J�=−4 /J, the hyperbola transverse axis is align
with the x axis �east-west opening hyperbolas�; for E
=ETmin�J�=−4 /J the hyperbolas are degenerate and consist
only of its asymptotes: mBy = � �mBx−2 /J�; for E�ETmin�J�,
the hyperbola transverse axis is align with the y axis �north-
south opening hyperbola�. Notice that the referred value for
ETmin�J� can be found from Eq. �11� using the asymptotic
solutions for mB.

The computed Euler characteristic is illustrated in Fig.
5�b�. Since there is no PT, no cusplike pattern occurs at E
=0 ∀ J and thus suggests that the mentioned pattern is in-
deed a necessary condition for the occurrence of a topology-
induced PT. Nevertheless, even in the absence of a PT the
density of Jacobian’s critical points is divergent at E=0, as
shown in Fig. 5�c�.

C. AB2-XY model in a field

We now turn to the case of the AB2-XY model in a mag-
netic field along the x direction �h�0,J=0�. In this case, the
appropriate physical symmetry condition implies mB1

+mB2
�2mB, also under the constraint of zero transversal magne-
tization �see Appendix A�. Thus, H��A ,�B� reads

0
mBx

0

m
B

y E < -4/J
E = -4/J
E > -4/J

(2/J, 0)
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FIG. 5. �Color online� �a� Equipotential curves of the A-frozen frustrated AB2-XY model: for E�ETmin�J�=−4 /J, the hyperbola transverse
axis is along the x axis �east-west opening hyperbolas�; for E=ETmin�J�=−4 /J the hyperbolas are degenerate with asymptotes: mBy

= � �mBx−2 /J�; and for E�ETmin�J�, the hyperbola transverse axis is along the y axis �north-south opening hyperbola�. �b� ln��J�E�� /Nc: no
cusplike pattern occurs at E=0. �c� Divergence of jl,h�E� at E=0 for J=0, 1, 2, and 4.
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H��A,�B� = 4�mAxmBx + mAymBy� − h�mAx + 2mBy� ,

�39�

which is the Morse function in the present case.
Here, we use the same procedure as in the previous case

to compute the topological invariants and thermodynamic
quantities, including the pertinent energies in the limit T
→0. In order to compute the canonical partition function
�Eq. �12��, it is useful to write Eq. �39� as follows:

H��A,�B� = 2�mA + mB�2 − 2�mA
2 + mB

2 � − h · �mA + 2mB� .

�40�

Using the identities �Eqs. �14� and �15�� in a two-
dimensional version, we obtain

Z��,Nc� = 	 Nc

8��

3�

−	

+	

�
i=1

3

dzi exp�− Nc	�
i=1

3
zi

2

8�
− ln 2�I0

���iz1 + z2 + �h�� − ln 2�I0��iz1 + z3 + 2�h��
� .

�41�

Now, the set of consistency equations from the saddle-point
method, in a C6 space, reads

z3

4�
−

I1

I0
��− z2 + 2�h��

�− z2 + 2�h�
�− z2 + 2�h�

= 0, �42�

z2

4�
−

I1

I0
��− z3 + �h��

�− z3 + �h�
�− z3 + 2�h�

= 0, �43�

and

z1 = z2 + z3. �44�

Here, the T�0 PT occurs only for h=0 with Ec=0 and M�T�
given in Fig. 2 for J=0.

The accessible configurations are now the four-
dimensional region,

Ch = ��mA,mB�:mA
2 � 1,mB

2 � 1� . �45�

However, by using the condition of zero transversal magne-
tization, i.e., mAy =2mBy, we can restrict the analysis of the

equipotential surfaces to a tree-dimensional space, which, in
fact, display E-dependent topological properties similar to
those shown in Fig. 3�a�. The isolated critical points are the
same, and the Morse number, �k�E�, is given by Eq. �30�,
where the index k�n�A ,n�B ;h�, without energy restriction, is
given by Eqs. �B11� and �B12�. Also, for Nc�1 the Hessian
is diagonal with matrix elements given by

Hii
A = �− 4mBx + h�

cos �Ai

Nc
− 4mBy

sin �Ai

Nc
�46�

and

Hii
B = �− 4mAx + 2h�

cos �Bi

Nc
− 4mAy

sin �Bi

Nc
. �47�

At a given critical point, H��A ,�B� in Eq. �39� reads

E�n�A
,n�B

,h� = 4	1 −
2n�A

Nc

	1 −

2n�B

Nc



− h�	1 −
2n�B

Nc

 + 2	1 −

2n�A

2Nc

� .

�48�

In analogy with the previous case, we now compute the to-
pological invariants numerically as a function of the energy
level E and a fixed magnetic field h using the methods dis-
cussed in Sec. II.

In Figs. 6�a� and 6�b� we display ln��h�E�� /2Nc and jl�E�
for distinct values of h, respectively. A symmetrical cusplike
pattern �see Fig. 6�a�� and a divergence at Ec�T�0�=0 �see
Fig. 6�b�� occur only for h=0, in agreement with the previ-
ous case for J=0. Nevertheless, for 4�h�0, jl�E� is singu-
lar at energies Ec�T�0�−h2 /2, not associated with finite-
temperature PT. In addition, a discontinuity in ln��h�E�� /2Nc
is observed only for h=4, the point at which mAx=0; further,
at this point, a metastable Ising spin-flip first-order PT is
predicted by ETmin�h�=−4−h=−h2 /2=−8, thus leading to
zero spin degeneracy and suppression of the divergency of
jl�E� for h�4; notice that while the previous expression for
ETmin�h� holds for 0�h�4, for h�4 we find ETmin�h�=4
−3h �see Figs. 6�b� and 6�c��. Moreover, as in the previous
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FIG. 6. �Color online� AB2-XY model in a field. �a� ln��h�E�� /2Nc: cusplike pattern �discontinuity� occurs only at h=0 �h=4�. �b�
Divergence of jl,h�E� at Ec�T�0�−h2 /2 for 4�h�0; the PT occurs at Ec�T�0�=0 and h=0. The divergence is suppressed for fields higher
than the spin saturation field predicted by ETmin�h� at h=4. �c� Emin�h� and ETmin�h� split at Ec�T=0�=−6 and h=2; they join again at h
=6, where saturation occurs as predicted both by Emin and ETmin. The illustration of the stable magnetic phases is associated with Emin�h�
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case, the topological energies �ETmin�h� and ETmax�h�=4+3h�
can be inferred both from ln��h�E�� /2Nc, jl,h�E�, and �k�E�
�see Appendix B�, as well as from Eq. �39�.

In Fig. 6�c�, we also show the stable spin configurations at
T=0. In fact, for 0�h�2 the system displays the same fer-
rimagnetic phase as in the frustrated case, while for h�6,
the system is fully polarized; in both cases Emin�h�
=ETmin�h�. For 2�h�6, Emin�h�=−h2 /4−5 and, at h=2, an
interesting continuous spin-flip PT occurs: by increasing h
the A spins rotate, seeking alignment with the field, while the
B spins rotate to cancel the unit cell transversal magnetiza-
tion. In fact, the B spins rotate in the opposite direction up to
�=30° at h=4 and then rotate back for higher fields; the net
result is a unit cell magnetization increasing linearly with h
up to saturation at h=6 �18�.

D. Standard infinite-range XY model revisited

Finally, we use our approach to revisit the standard
infinite-range XY model with ferromagnetic interactions
�4–6,25� in the presence of a magnetic field. The model is a
system of N plane rotators described by angular variables �
= ��1 , . . . ,�N� and Hamiltonian �here we do not consider ki-
netic energy effects� given below,

H��� =
1

2N
�
i,j=1

N

�1 − cos��i − � j�� − h�
i=1

N

cos �i. �49�

The free energy per particle reads �25�

F�z;T,h� =
1

2
+

1

�
	 z2

2�
− ln�2�I0�z + �h��
 , �50�

where z is the solution of the saddle-point self-consistency
equation,

z

�
=

I1

I0
�z + �h� = M�z;T,h� , �51�

with M�z ;T ,h�=− 1
�

�F�z;�,h�
�h . In the limit h→0, the solution

of Eq. �51� is z=0 for ���c=2, corresponding to a vanish-
ing magnetization, and z�0 for ���c. Therefore, since the
energy, E�z ;T ,h�=− �

�� ��F�z ;T ,h��, is given by

E�z;T,h� = 1
2 �1 − M�z;T,h�2� − hM�z;T,h� , �52�

the T�0 PT occurs for Ec=0.5 and h=0.

The critical points of this model are �=�c= �0,��N. At a
given critical point and in the limit N�1, the Hessian is
diagonal, with matrix elements given by �5,6�

Hii��c� = �	1 −
2n�

N

 + h�cos �i. �53�

In zero field, the Euler characteristic �density of Jacobian’s
critical points� displays discontinuous �divergent� behavior at
the critical energy Ec=0.5, thereby confirming the topologi-
cal origin of the finite-temperature PT exhibits by this model
�4–6�. The relation between the PT exhibited by this model
and the topology of its configuration space is also verified
qualitatively considering the sequence of topological trans-
formations undergone by ME until E=Ec�T�0�=0.5 �6�.

Here, we are primarily concerned with the field depen-
dence of the above-mentioned topological features and their
connection with the thermodynamics of the model. To this
aim, we compute numerically ln��h�E�� /N and jl,h�E�, as
shown in Figs. 7�a� and 7�b�. From Eq. �52� and Fig. 7�a�, we
find Emax�h�=ETmax�h�=1 /2+h2 /2 for 0�h�1 and h for h
�1. As shown in Figs. 7�a� and 7�b�, ln��h�E�� /N is discon-
tinuous for 0�h�1, while jl,h�E� is singular at ETmax�h�
=Ec�T�0�+h2 /2 for 0�h�1, with the finite-temperature
PT at Ec�T�0�=1 /2 and h=0. In addition, as shown in Fig.
7�a�, we also notice that, similarly to the microcanonical con-
figurational entropy �26�, there is no positive lower bound
for the slope of the Euler characteristic in the presence of a
field. In Fig. 7�c�, we display the pertinent energies in the
limit T→0: Emin�h�=ETmin�h�=−h. First, we note that Ec�T
=0�=limh→0 Emin=0 and M =1. Further, the two ETmax�h�
metastable solutions �25� correspond to M =−h and M =−1.
Therefore, for h�1, ETmax�h� exhibits a nondegenerate state,
thus causing the suppression of the singular behavior of
jl�E�.

Lastly, in the present model we can provide both a quan-
titative analysis and a qualitative illustration of the direct
connection between thermodynamics and the topology of
configuration space. In fact, in the limit T→0, we find two
metastable solutions of Eq. �51� for h�1, associated with the
metastable solutions for ETmax�h� referred above �see Fig.
8�a� for h=0.5 and T=0.01 and Fig. 7�c��. For h=1, the
metastable solutions coincide �see Fig. 8�b� for h=1 and T
=0.01 and Fig. 7�c�� beyond which the suppression of the
discontinuity �divergence� of ln��h�E�� /N �jl�E�� takes place.
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For h�1, we find that only the minimum solution M =1
remains �see Fig. 8�c� for h=1.25 and T=0.01 and Fig. 7�c��.
However, for h�1 and at zero temperature, Eq. �52� also
allows for a thermodynamically unstable solution, i.e., M
=−1, corresponding to Emax�h�1�=ETmax�h�1�=h.

IV. CONCLUSIONS

In conclusion, we have presented a quite complete topo-
logical characterization of the phase transitions occurring in
two infinite-range XY models exhibiting noncollinear spin
structures on the AB2 chain and complemented the analysis
of the phase transition displayed by the standard infinite-
range XY model. We have computed the Morse number and
the Euler characteristic, as well as other topological invari-
ants associated with the model systems, which are found to
behave similarly as function of the energy level in the con-
text of Morse theory. For example, the Euler characteristic
and other invariants as well have their maximum �or diver-
gence� at the critical energy of the finite-temperature PT.
Moreover, we have used an efficient alternative method to
compute the Euler characteristic, which proves more fea-
sible. In addition, we have introduced the minimum �maxi-
mum� topological energy, ETmin �ETmax�, below �above� which
the topological invariants are zero �or display no variation�,
which helped us to clarify several properties of the phase
transitions, both at zero and finite temperatures. In fact, we
showed that ETmin splits from the MF minimum energy curve,
Emin, at the critical point of the zero-temperature phase tran-
sitions. This feature is associated with the noncollinear na-
ture of the spin structure of the frustrated- and field-induced
phases. Further, our computation of the density of Jacobian’s
critical points has confirmed the topological origin of the
finite-temperature phase transition for the frustrated AB2-XY
model ∀ J and for the AB2-XY model in zero field. In addi-
tion, we have established a nontrivial direct connection be-
tween the thermodynamics of the studied models, which
have been solved exactly under the saddle-point approach,
and the topology of its configuration space. In fact, all the
zero-temperature stable and metastable pertinent energies,
included the topological ones, are extremum solutions of the
saddle-point self-consistent equations in the limit T→0. This
connection has also allowed us to identify the nondegeneracy
condition under which the divergence of the density of Jaco-

bian’s critical points is suppressed. Finally, our findings and
those available in the literature �1–7,24–26� suggest that the
cusplike pattern exhibits both by the Euler characteristic and
the topological contribution for the entropy at the critical
energy �3�, put together with the divergence of density of
Jacobian’s critical points, and emerge as necessary and suf-
ficient conditions for the occurrence of a finite-temperature
topology-induced phase transition. The general character of
this proposal must be subject to further scrutiny, on a rigor-
ous basis �1,3�, and tested on a wider variety of systems,
including those with short-range interaction. In summary, our
reported findings may shed light on the quest for a proper
understanding of the topological properties associated with a
phase transition.
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APPENDIX A: SYMMETRY PROPERTIES
OF THE AB2-XY MODEL

In this appendix we shall examine the symmetry proper-
ties of the AB2-XY model. The results will allow us to sim-
plify the analysis of their topological properties. In particu-
lar, these features will turn the computation of the
topological invariants and thermodynamic behavior more
feasible.

1. Topology of configuration space of the frustrated
AB2-XY model

Here, our goal is to compute the Euler characteristic of
the frustrated AB2-XY model in a general framework, in such
a way that the symmetry properties of the model are un-
veiled.

Inserting the magnetization �Eq. �2�� in Hamiltonian �1� in
zero field, we find

H = zABmA · �mB1
+ mB2

� + zBJmB1
· mB2

. �A1�

The critical points of the Morse function defined by Eq. �A1�
are thus found from the equations below,
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�H��A,�B1
,�B2

�

���i
= 0, i = 1, . . . ,Nc, � = A,B1,B2.

�A2�

For the A spins we thus find

�H��A,�B1
,�B2

�

��Ai
=

zAB

Nc
�− sin �Ai

�mB1x + mB2x�

+ cos�Ai
�mB1y + mB2y�� = 0, �A3�

while for the B1�2� spins we have

�H��A,�B1
,�B2

�

��B1�2�i

=
zAB

Nc
�− sin �B1�2�i

mAx + cos �B1�2�i
mAy�

+
zB

Nc
�− sin �B1�2�i

mB2�1�x

+ cos �B1�2�i
mB2�1�y

� = 0. �A4�

From Eq. �A3�, the solutions are �Aic
� �0,��Nc if mB1y

=−mB2y and �Aic
� �� /2,3� /2�Nc if mB1x=−mB2x. On the

other hand, from Eq. �A4� the solutions are �B1�2�ic
� �0,��Nc if �Aic

� �0,��Nc and �B1�2�i
� �� /2,3� /2�Nc if

�Aic
� �� /2,3� /2�Nc. Therefore, we have two classes of iso-

lated critical points �c= ���Aic
� , ��B1ic

� , ��B2ic
�� defined by �c

� �0,��3Nc and �c� �� /2,3� /2�3Nc. In fact, summing up ei-
ther Eq. �A3� or �A4� over �Aic

, �B1ic
, and �B2ic

, we find

− mAx�mB1y + mB2y� + mAy�mB1x + mB2x� = 0. �A5�

The two classes of critical points are thus equivalent, differ
only by a rotation, and correspond to the constraint of zero
transversal magnetization with respect to the symmetry
breaking magnetization direction. To achieve that, the B1 and
B2 spins cancel their frustration-induced transversal magne-
tization, while the A spins have no transversal component.

The Morse number thus reads

�k�E� =�	 Nc

n�A

	 Nc

n�B1


	 Nc

n�B2


�
k�n�A,n�B1�2�

;E�
+ 	 Nc

n�3�/2�A



��	 Nc

n�3�/2�B1


	 Nc

n�3�/2�B2


�
k�n�3�/2�A,n�3�/2�B1�2�

;E�
,

�A6�

where k�n�A ,n�B1�2�
;E� and k�n�3�/2�A ,n�3�/2�B1�2�

;E� are the
indices of the critical points with energy less than E. Due to
the form of the H��A ,�B1

,�B2
�, it is useful to split the Hes-

sian into three blocks relative to A, B1, and B2 sites,

Hij
AB1B2 = Hkl

A + Hmn
B1 + Hop

B2,

k,l = 1, . . . ,Nc, m,n = Nc + 1, . . . ,2Nc,

o,p = 2Nc + 1, . . . ,3Nc. �A7�

In fact, the Hessian is diagonal with matrix elements given
by

Hii
A = −

zAB

Nc
�cos �Ai

�mB1x + mB2x� + sin �Ai
�mB1y + mB2y�� ,

�A8�

Hii
B1�2� = −

zAB

Nc
�cos �B1�2�i

mAx + sin �B1�2�i
mAy�

−
zB

Nc
�cos �B1�2�i

mB2�1�x
+ sin �B1�2�i

mB2�1�y
� .

�A9�

At an isolated critical point, we can use the above results to
find the energy level H��A ,�B1

,�B2
� in Eq. �A1�,

E�n��3�/2�A,B1,B2
,J� = zAB	1 −

2n��3�/2�A

Nc


�	1 −
2n��3�/2�B1

Nc



+ 	1 −

2n��3�/2�B2

Nc


� + zBJ

�	1 −
2n��3�/2�B1

Nc


	1 −
2n��3�/2�B2

Nc


 .

�A10�

We can now compute numerically the Euler characteristic as
a function of the energy level, as shown in Fig. 9 for J=2.
We have performed this task using two distinct approaches.
In the first one, we consider the two equivalent class solu-
tions described above, without no symmetry breaking. In the
second one, we choose the magnetization direction along the
x axis, so that only the first class of critical points is consid-
ered, i.e., �c� �0,��3Nc, with mB1y �−mB2y and mB1x=mB2x.

In Fig. 9 we compare the computed Euler characteristic
using the two above-mentioned approaches using Eqs. �9�
and �10�. In order to make the total number of critical points
equivalent for Nc�1 in the two approaches, we make
Nc;AB2

= �3 /2�Nc;AB1B2
=300 with point interval 
E=0.01.

With this normalization, the results are quite compatible, as

-4 -2 0 2 4 6
E

0

0.2

0.4

0.6

0.8

ln
|χ

(E
)|

/γ
N

c

AB1 B2

AB2

J = 2

γAB2
= 2

γAB1 B2
= 3

FIG. 9. �Color online� Comparison between computed Euler
characteristic with �AB2� and without �AB1B2� symmetry breaking.
We used Nc;AB2

= �3 /2�Nc;AB1B2
=300 �see text�.
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shown in Fig. 9, resulting in the same values for ETmin and
ETmax and cusplike pattern at Ec�T�0�=0. Therefore, in this
work we shall use approach one to study the AB2-XY model
in detail.

2. Field effect on topology of configuration space

Here, we analyze the symmetry properties of the nonfrus-
traded AB2-XY model in the presence of a field along the x
direction. Under these conditions and using the definition of
magnetization �Eq. �2��, Hamiltonian �1� reads

H = zABmA · �mB1
+ mB2

� − h · �mA + mB1
+ mB2

� .

�A11�

In this case, the critical points of the Morse function �Eq.
�A11�� are found from Eq. �A2�,

�H��A,�B1
,�B2

�

���i
= 0, i = 1, . . . ,Nc, � = A,B1,B2.

�A12�

We thus find for the A and B1�2� spins, respectively,

�H��A,�B1
,�B2

�

��Ai
=

1

Nc
�− sin �Ai

�zAB�mB1x + mB2x� − h�

+ cos�Ai
zAB�mB1y + mB2y�� = 0, �A13�

�H��A,�B1
,�B2

�

��B1�2�i

=
1

Nc
�− sin �B1�2�i

�zABmAx − h�

+ cos �B1�2�i
zABmAy� = 0. �A14�

Finally, summing up Eq. �A14� over ��i, �=A ,B1, and B2,
we obtain

h�mAy + mB1y + mB2y� = 0. �A15�

Therefore, the constraint of zero transversal magnetization in
a field involves the components of A and B1�2� spins. Notice
also that by taking mB= �1 /2��mB1

+mB2
�, which is in fact a

symmetry property, we can map Eqs. �46� and �47� onto the
Hessian computed from Eqs. �A13� and �A14�, respectively.

3. Thermodynamics of the frustrated AB2-XY model

In this section we are interested in the thermodynamics of
the frustrated AB2-XY model, which can be exactly derived
in the saddle-point framework. Therefore, using the identities

SAi
· �SB1j

+ SB2j
� = 1

2 ��SAi
+ SB1i

+ SB2j
�2

− SAi

2 − �SB1i
+ SB2j

�2� , �A16�

SB1i
· SB2j

= 1
2 ��SB1i

+ SB2j
�2 − SB1i

2 + SB2j

2 � �A17�

and the definition of magnetization �Eq. �2��, Hamiltonian
�1� can thus be written in a quadratic form,

H =
Nc

2
�zAB�mA + mB1

+ mB2
�2 − zAmA

2

+ �zBJ − zAB��mB1
+ mB2

�2 − zBJ�mB1

2 + mB2

2 �� .

�A18�

Now, in order to compute the partition function

Z��,Nc� = �
0

2�

�
i=1

Nc

d�Ai
d�B1i

d�B1i
exp�− �H� , �A19�

we use the identity

exp�− ciyi
2� =

1

�
�

−	

+	

exp�− xi
2 + 2i�cixi · yi�dxi.

�A20�

We thus find

Z��,Nc� = 	 Nc

2��2
5/2�
0

2�

�
i=1

Nc

d�Ai
d�B1i

d�B2i�
−	

+	

�
i=1

5

dwi exp Nc	− �
i=1

5
wi

2

2�
+ zAB�iw1 − w3�mA

+ �i��zABw1 + �zBJ − zABw2� − �zBJw4�mB1
+ �i��zABw1 + �zBJ − zABw2� − �zBJw5�mB2
 . �A21�

Notice that Z�� ,Nc� is invariant under the exchange of the magnetization of B sites. Performing the integrals over the angular
variables, we have

Z��,Nc� = 	 Nc

2��2
5/2�
−	

+	

�
i=1

5

dwi exp Nc	− �
i=1

5
wi

2

2�
+ ln 2�I0�zAB�iw1 − w3�� + ln 2�I0��i��zABw1 + �zBJ − zABw2� − �zBJw4��

+ ln 2�I0��i��zABw1 + �zBJ − zABw2� − �zBJw5��
 , �A22�
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where I0 is the zero-order modified Bessel function. With the
aim to compute the free energy given by

F = − lim
Nc→	

1

�Nc
ln Z��,Nc� , �A23�

using the saddle-point method, we search for the stationary
points of

f = − �
i=1

5
wi

2

2�
+ ln 2�I0�zAB�iw1 − w3��

+ ln 2�I0��i��zABw1 + �zBJ − zABw2� − �zBJw4��

+ ln 2�I0��i��zABw1 + �zBJ − zABw2� − �zBJw5�� .

�A24�

Thereby, we find a self-consistent system in a C10 space,
corresponding to �f /�wi=0, i=1, . . . ,5. We emphasize that
the forms of the self-consistent equations associated to mB1
and mB1

are identical except for the correspondence
w4↔w5. In fact, notwithstanding the numerical difficult to
obtain solutions of this nonlinear system, we have succeeded
in getting some solutions for particular values of frustration J
and temperature T and verified that the constraint condition
of zero transversal magnetization obtains and that w4=w5,
which implies mB1

=mB2
. We also remark that similar con-

clusions also obtain for the nonfrustrated AB2-XY model in
the presence of a field.

APPENDIX B: ADDITIONAL TOPOLOGICAL
INVARIANTS

Here, we would like to discuss some details associated
with the indices of the critical points, which we have used in
Secs. II and III to compute the Euler characteristic and the
density of Jacobian’s critical points, both in the limit Nc�1.
We also compute other topological invariants that corrobo-
rate general features found in previous ones.

1. Frustration-dependent topological invariants

Now, we want to determine the number k of negative
eigenvalues of the Hessian matrix of the Hamiltonian
H��A ,�B� �Eq. �11��. We split the Hessian in two blocks, HA

and HB. The diagonal elements of the Hessian are

Hii
A = −

4 cos �Ai

Nc
mBx, �B1�

Hii
B = −

1

Nc
�4mAx cos �Bi + 2J�mxB cos �Bi − myB sin �Bi��

−
2J

Nc
2cos 2�Bi �B2�

and the off-diagonal ones are

Hij
A =

�2H��A,�B�
��Ai � �Bj

=
�2H

��Bi � �Aj
= 0, i, j = 1, . . . ,Nc

�B3�

and

Hij
B = −

2J

Nc
2cos��Bi + �Bj� . �B4�

Note that when i= j in Eq. �B4�, the last term in Eq. �B2� is
equal to Eq. �B4�.

At a given critical point and for Nc�1, the index k of the
critical point can be approximated by the number of negative
elements of O�1 /Nc� in Eqs. �B1� and �B2�. In fact, since the
Hessian elements of O�1 /Nc

2� form a matrix of rank one, the
contribution of these terms to the signal of the eigenvalues of
the Hessian is irrelevant �5,6�. Therefore, k is given by the
number of negative elements of O�1 /Nc� in Eqs. �B1� and
�B2�. Since the angles �Ai and �Bi are either 0 or �, the index
reads

index k�n�A,n�B� = indexA�n�A,n�B� + indexB�n�A,n�B� ,

�B5�

with

indexA =�
n�A if n�B �

Nc

2

Nc − n�A if n�B �
Nc

2

0 if n�B =
Nc

2
,
� �B6�

where the last result in Eq. �B6� requires Nc even, and

indexB =�
n�B if 2	1 −

2n�A

Nc

 + J	1 −

2n�B

Nc

 � 0

Nc − n�B if 2	1 −
2n�A

Nc

 + J	1 −

2n�B

Nc

 � 0

0 if 2	1 −
2n�A

Nc

 + J	1 −

2n�B

Nc

 = 0.

�
�B7�

Now using Eqs. �30�, �34�, and �B5�–�B7�, we can compute
numerically ln �k�E� /2Nc versus k. From these diagrams, we
can also determine ETmin�J� and ETmax�J�. In fact, for E
�ETmin�J�, there are no critical points. For ETmin�J��E
�ETmax the diagram is being filled and for E=Ec�T�0�=0
∀ J, ln �k�E� /2Nc reaches its maximum value at k=Nc. For
E�ETmax�J�, the diagram is fulfilled. In Figs. 10�a� and 10�b�
we illustrate these features for J=2. For E�ETmin�J=2�=
−2, there are no critical points. In Fig. 10�a�, we show the
diagram for E=Ec�T�0�=0, which displays the maximum
of ln �k�E� /2Nc at k=Nc=500. In Fig. 10�b� for E
�ETmax�J=2�=6, the diagram is fulfilled.

We also remark that if indexA=0, i.e., n�B=Nc /2, with Nc
even �see Eq. �B6��, we have index=Nc /2 ∀ J. This result
implies in values of ln �k�E� /2Nc lying in a vertical disjoint
line defined by k=Nc /2=250, as shown in Fig. 10. More-
over, if indexB=0, i.e. �see Eq. �B7��,

F. A. N. SANTOS AND M. D. COUTINHO-FILHO PHYSICAL REVIEW E 80, 031123 �2009�

031123-12



2�Nc − 2n�A
� + J�Nc − 2n�B

� = 0, �B8�

it will prove useful to write n�B=Nc /2�
B for n�B�Nc /2
or n�B�Nc /2, respectively, where 
B=0, . . . ,Nc /2, which
implies �here we consider Nc even, without loss of general-
ity�

index k�n�A,n�B� = 1
2 �Nc − 
BJ� . �B9�

Therefore, since the index� �0, . . . ,2Nc�, the above result
holds only for J�N, and Eq. �B8� thus becomes a linear
Diophantine equation whose solutions are n�A and n�B. This
implies in values of ln �k�E� /2Nc lying in a disjoint curve,
∀ J�N, which meets the vertical line referred above at k
=Nc /2=250, as shown in Fig. 10.

With aim of understanding the influence of the frustration
interaction J in the Morse number, we also compute this
quantity without energy restrictions, ln �k�J� /2Nc, which
corresponds to the definition in Eq. �30� for E�ETmax�J�=4
+J. In this regime of energies, for 0�J�2, the filled area of
the diagram grows up to J=2, the value for which the mag-
netization vanishes. For higher values of J, the points at left
of the vertical disjoint line �k=Nc /2=250� are continuously
shifted to the right of this line. We illustrate this feature in
Figs. 10�c� and 10�d� for J=1 and J=4, respectively.

We also compute the topological contribution to the en-
tropy per unit cell ��E� that, as in �5,6�, can be well approxi-
mated by

��E� =
1

2Nc
ln Ncp�E� , �B10�

where Ncp�E�=�k=1
2Nc �k�E� is the total number of critical

points of H��A ,�B� in the manifold ME. The behavior of ��E�
is plotted in Fig. 11. For E�ETmin�J� there is no topological
contribution to the entropy. For E�ETmin�J�, the contribution

is nonzero and ��E� reaches its maximum at Ec�T�0�=0
∀ J and remains constant for E�Ec=0; notice also the dis-
continuity in its slope at E=0�→0. Moreover, for E
�Ec=0, Fig. 11 displays a pattern similar to that exhibited
by ln��J�E�� /2Nc in Fig. 4�a�. Under the constraint mAx
=−1, the curves present no cusplike singularity, as shown in
Fig. 11�b�.

2. Field-dependent topological invariants

We now turn to the case of the AB2-XY model in a mag-
netic field using similar methods to compute ln �k�E� /2Nc,
ln �k�h� /2Nc, and ��E�. Using the same procedure of Appen-
dix B 1, the index of the Hessian is given by Eq. �B5� with

indexA =�
n�A if h � 4	1 −

2n�B

Nc



Nc − n�A if h � 4	1 −
2n�B

Nc



0 if h = 4	1 −
2n�B

Nc

 � �B11�

and

FIG. 12. �Color online� ln��k�h�� /2Nc for E�ETmax�h� is dis-
played in �a�–�c�: for 0�h�2, the diagram is being filled and at the
critical field value of the T=0 PT, h=2, the diagram reaches its final
form; the vertical disjoint lines are explained in the text. �d� h
dependence of ��E�: the discontinuity in slope of ��E� at Ec�T
�0�=0 shows up only for h=0.

FIG. 10. �a� ln��k�E�� /2Nc for J=2 and E=Ec�T�0�=0, exhib-
iting the maximum at k=Nc=500; �b� for E�ETmax�J�=6, the dia-
gram is fulfilled. ln��k�J�� /2Nc for E�ETmax�J�: for 0�J�2, the
filled area of the diagram grows up to J=2; for higher values of J,
the points at left of the vertical disjoint line �k=Nc /2=250� are
shifted to the right of this line, as illustrated in �c�, �b�, and �d� for
J=1, J=2, and J=4, respectively. The vertical disjoint lines and
curves are explained in the text.
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FIG. 11. �Color online� J dependence of ��E�. �a� The maximum
occurs at Ec�T�0�=0 ∀ J and ��E� remains at this value for E
�Ec=0; notice the discontinuity in the slope at E=0�→0. �b�
Under the constraint mAx=−1, the curves present no cusplike
behavior.
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indexB =�
n�B if h � 2	1 −

2n�B

Nc



Nc − n�B if h � 2	1 −
2n�A

Nc



0 if h = 2	1 −
2n�A

Nc

 .
� �B12�

Since ln �k�E� /2Nc has equivalent properties with respect to
the frustrated case, here we only show ln��k�h�� /2Nc, i.e.,
the Morse number for E�ETmax�h�. In Figs. 12�a�–12�c� we

display ln��k�h�� /2Nc: for 0�h�2, the diagram is being
filled and at the critical field value of the T=0 PT, h=2, the
diagram reaches its final form, with two symmetrical arcs
around k=Nc=500. Therefore, this quantity was very sensi-
tive to the critical field value of the T=0 phase transition.
Moreover, arguments similar to those used for the frustrated
case can explain the occurrence of vertical disjoint lines at
h=0, 1, 2, and 4.

Finally, the behavior of the topological contribution to the
entropy is shown in Fig. 12�d�. We stress that the disconti-
nuity in its slope occurs only for h=0, in agreement with the
results for ln��h�E�� /2Nc in Fig. 6�a�.
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